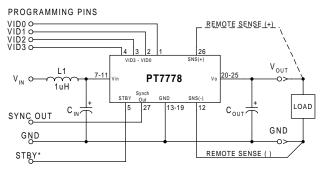

SLTS115

(Revised 8/31/2000)

Description


The PT7778 is a high-output 32A Integrated Switching Regulator (ISR), housed in a 27-pin SIP package, The PT7778 is the 3.3V-input bus version of the PT7779. It includes short circuit protection and requires only 330µF of output capacitance for proper operation.

The output voltage of the PT7778 is programmable from 1.3V to 2.05V using a 4-bit input, which is compati-

ble with Intel's Pentium*II Processors. The 32A capability provides the ideal power source for the industry's latest high-speed, low-voltage μPs, DSPs, and custom VLSI devices. For additional current, the PT7778 may be paralleled with up to two PT7740 32A current boosters.

A differential remote sense is provided to compensate for voltage drop between the ISR and load.

Standard Application

 $\begin{array}{ll} C_{in} &= Required\ 2400\mu F\ electrolytic \\ C_{out} &= Required\ 330\mu F\ electrolytic \\ L1 &= Optional\ 1\mu H\ input\ choke \end{array}$

Pin-Out Information

Pin	Function				
1	VID0				
2	VID1				
3	VID2				
4	VID3				
5	STBY*- Stand-by				
6	N/C				
7	Vin				
8	V_{in}				
9	V_{in}				
10	Vin				
11	Vin				
12	Remote Sense Gnd (3)				
13	GND				
14	GND				

Pin	Function
15	GND
16	GND
17	GND
18	GND
19	GND
20	V _{out}
21	V _{out}
22	V _{out}
23	V _{out}
24	V _{out}
25	V _{out}
26	Remote Sense Vout
27	Sync Out

For STBY* pin; open = output enabled; ground = output disabled.

Specifications

Characteristics						
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_o	$T_a = +60$ °C, 200 LFM, pkg N $T_a = +25$ °C, natural convection	0.1 (1) 0.1 (1)	_	32 31	A
Input Voltage Range	V_{in}	$0.1A \le I_o \le 32A$	3.1	_	3.6	V
Output Voltage Tolerance	ΔV_{o}	V_{in} = +3.3V, I_{o} = 32A -40°C \leq T_{a} \leq +85°C	Vo-0.03	_	Vo+0.03	V
Line Regulation	Reg _{line}	$3.1V \le V_{in} \le 3.6V$, $I_o = 32A$	_	±10	_	mV
Load Regulation	Reg _{load}	$V_{in} = +3.3V, 0.1 \le I_o \le 32A$	_	±10	_	mV
Vo Ripple/Noise pk-pk	V_n	$V_{in} = +3.3V$, $I_o = 32A$	_	50	_	mV
Transient Response with $C_{out} = 330 \mu F$	$egin{array}{c} t_{tr} \ V_{os} \end{array}$	I _o step between 16A and 32A V _o over/undershoot	_	100 200	_	μSec mV
Efficiency	η	$V_{in} = +3.3 \text{V}, I_o = 20 \text{A}, V_o = 1.8 \text{V}$	_	90	_	%
Switching Frequency	f_{0}	$3.1V \le V_{in} \le 3.6V$ $0.1A \le I_o \le 32A$	300	350	400	kHz
Absolute Maximum Operating Temperature Range	T_a	Over V _{in} Range	-40	_	+85 (2)	°C
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2 20-20,000Hz, Soldered in a PC board	_	10/15	_	G's
Weight	_	Vertical/Horizontal	_	53/66	_	grams

Notes: (1) ISR-will operate down to no load with reduced specifications.

(2) Consult the Safe Operating Area curves, or contact the factory for the appropriate derating.

(3) If the remote sense ground is not used, pin 12 must be connected to pin13 for optimum output voltage accuracy.

External Capacitors: The PT7778 requires a minimum output capacitance of 330µF for proper operation. The PT7778 also requires an input capacitance of 2400µF, which must be rated for a minimum of 2.0Arms of ripple current. For transient or dynamic load applications, additional capacitance may be required. For further information, see the accompanying application note on capacitor selection for this product.

Input Filter: An input filter inductor is optional for most applications. The input inductor must be sized to handle 32ADC with a typical value of 1µH.

32 Amp Programmable Integrated Switching Regulator

Features

- +3.3V Input
- 32A Output (64A with PT7740 Booster)
- 4-bit Programmable: 1.3V to 2.05V
- High Efficiency
- Short Circuit Protection
- Differential Remote Sense
- 27-pin SIP Package

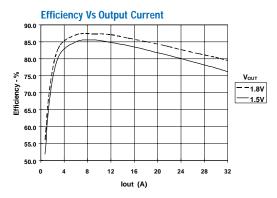
Programming Information

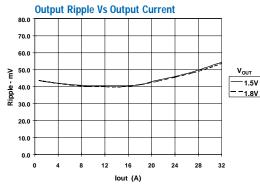
VID3	VID2	VID1	VIDO	Vout
1	1	1	1	1.30V
1	1	1	0	1.35V
1	1	0	1	1.40V
1	1	0	0	1.45V
1	0	1	1	1.50V
1	0	1	0	1.55V
1	0	0	1	1.60V
1	0	0	0	1.65V
0	1	1	1	1.70V
0	1	1	0	1.75V
0	1	0	1	1.80V
0	1	0	0	1.85V
0	0	1	1	1.90V
0	0	1	0	1.95V
0	0	0	1	2.00V
0	0	0	0	2.05V

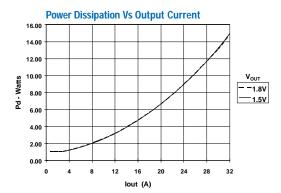
Logic 0 = Pin 12 potential (remote sense gnd)
Logic 1 = Open circuit (no pull-up resistors)
VID3 may not be changed while the unit is operating.

Ordering Information

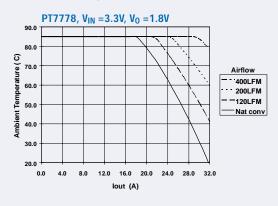
PT7778□ = 1.3 to 2.05 Volts For dimensions and PC board layout, see Package Style 1020 and 1030


PT Series Suffix (PT1234X)


C /D:
Case/Pin
C C
Configuration
Comiguration


Vertical Through-Hole	N
Horizontal Through-Hole	Α
Horizontal Surface Mount	С

TYPICAL CHARACTERISTICS


Performance Characteristics, V_{in} =3.3V (See Note A)

Safe Operating Area Curves (See Note B)

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the regulator.

Note B: Safe Operating Area curves represent conditions at which internal components are at or beow manufacturer's rated operating temperatures.

PT77775, PT7778, PT7779

Capacitor Recommendations for the PT7775/8/9 Regulators and PT7740/1 Current Boosters

Input Capacitors

The recommended input capacitance is determined by 2.0 ampere minimum ripple current rating and 1500µF minimum capacitance. Capacitors listed below must be rated for a minimum of 2x the input voltage with +5V operation. Ripple current and $\leq\!100m\Omega$ Equivalent Series Resistance (ESR) values are the major considerations along with temperature when selecting the proper capacitor.

Output Capacitors

The minimum required output capacitance is $330\mu F$ with a maximum ESR less than or equal to $100m\Omega$. Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellent low frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any microprocessor high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in the Table 1 below.

Tantalum Characteristics

Tantalum capacitors with a minimum 10V rating are recommended on the output bus, but only the AVX TPS Series, Sprague 594/595 Series, or Kemet T495/T510 Series. The AVX TPS Series, Sprague Series or Kemet Series capacitors are specified over other types due to their higher surge current, excellent power dissipation and ripple current ratings. As an example, the TAJ Series by AVX is not recommended. This series exhibits considerably higher ESR, reduced power dissipation and lower ripple current capability. The TAJ Series is a less reliable compared to the TPS series when determining power dissipation capability.

Capacitor Table

Table 1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The suggested minimum quantities per regulator for both the input and output buses are identified.

This is not an extensive capacitor list. The table below is a selection guide for input and output capacitors. Other capacitor vendors are available with comparable RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz). These critical parameters are necessary to insure both optimum regulator performance and long capacitor life.

Table 1 Capacitors Characteristic Data

Capacitor Vendor/ Series	/endor/		Capacitor	Characteristics	Quantity			
	Working Voltage	Value(µF)	(ESR) Equivalent Series Resistance	105°C Maximum Ripple Current(Irms)	Physical Size(mm)	Input Bus	Output Bus	Vendor Number
Panasonic FC Surface Mtg	16V 35V	3300 330	0.028Ω 0.065Ω	2490mA 1205mA	18x21.5 12.5x16.5	1	1	EEVFC1C333N EEVFC1V331LQ
FA Radial	10V 16V	680 1200	0.090Ω 0.038Ω	755mA 1690mA	10x12.5 16x15	2	1 1	EEUFA1A681 EEUFA1C122S
United Chemi -Con LFVSeries	25V 16V 16V	330 2200 470	0.084Ω 0.038Ω 0.084Ω	825mA 1630mA 825mA	10x16 16x20 10x16	2	1 1 1	LXV25VB331M10X16LL LXV16VB222M16X20LL LXV16VB471M10X16LL
Nichicon PL Series PM Series	10V 10V 25V	680 2700 330	0.085Ω 0.035Ω 0.095Ω	795mA 1740mA 750mA	10x15 16x20 10x15	2	1 1 1	UPL1A681MPH6 UPL1A272MHH6 UPL1E331MPH6
Oscon SS SV	10V 10V	330 330	0.025Ω/7=0.006Ω 0.020Ω/7=0.005Ω	>9800mA >9800mA	10x10.5 10.3x12.6	7 7	N/R (Note)	10SS330M 10SV330M(Sufvace Mtg
AVX Tanatalum TPS- Series	10V 10V	330 330	0.100/7=15Ω 0.060/7Ω	3500mA 1826mA	7.3Lx 4.3Wx 4.1H	7 7	1 1	TPSV337M010R0100 TPSV337M010R0060
Sprague Tantalum 595D/594D	10V 10V	330 680	0.045W/7=0.011Ω 0.090Ω/4	>4500mA >1660mA	7.3L x 5.7W x 4.0H	7 4	1	594D337X0010R2T Surface Mount 595D687X0010R2T
Kemet	10V	330	0.035Ω/5=0.007Ω	2000mA	4.3Wx7.3L	7	1	T510X337M010AS
Tantalum T510/T495 Series	10V	220	0.070Ω/2=0.035Ω	>2000mA	x4.0H		2	T495X227M010AS Surface Mount
Sanyo Poscap TPB	10V	220	0.040Ω	3000mA	7.2L x 4.3W x 3.1H		2	10TPB220M Surface Mount

Note: (N/R) is not recommended for this application, extremely low Equivalent Series Resistance (ESR)

